skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jia, Melissa H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract One of the common mechanisms to trigger plant innate immunity is recognition of pathogen avirulence gene products directly by products of major resistance (R) genes in a gene for gene manner. In the USA, theRgenes,Pik-s, PiKh/m, andPi-ta, Pi-39(t), andPtrgenes have been effectively deployed to prevent the infections ofM. oryzaeraces, IB49, and IC17 for some time.Pi-9is only recently being deployed to provide overlapped and complimentary resistance toMagnaporthe oryzaeraces IB49, IC17 and IE1k in the USA. Pi-ta, Pi-39(t), Pi9 are major nuclear binding site-leucine rich (NLR) proteins, and Ptr is an atypical R protein with 4 armadillo repeats. AlphaFold is an artificial intelligence system that predicts a protein 3D structure from its amino acid sequence. Here we report genome sequence analyses of the effectors and avirulence (AVR) genes,AVR-PitaandAVR-Pik, andAVR-Pi9, in 3 differentialM. oryzaeraces. Using AlphaFold 2 and 3 we find strong evidence of direct interactions of products of resistance genesPi-taandPikwithM. oryzaeavirulence (AVR) genes,AVR-PitaandAVR-Pikrespectively. We also found that AVR-Pita interacts with Pi-39(t) and Ptr, and Pi9 interacts with both AVR-Pi9 and AVR-Pik. Validation of direct interactions of two pairs of R and AVR proteins supported a direct interaction mechanism of plant innate immunity. Detecting interaction of both Ptr and Pi39(t) with AVR-Pita, and Pi-9 with both AVR-Pi9 and AVR-Pik, revealed a new insight into recognition of pathogen signaling molecules by these host R genes in triggering plant innate immunity. 
    more » « less
  2. Rice resistance (R) genes have been effectively deployed to prevent blast disease caused by the fungal pathogen Magnaporthe oryzae, one of the most serious threats for stable rice production worldwide. Weedy rice competing with cultivated rice may carry novel or lost R genes. The quantitative trait locus qBR12.3b was previously mapped between two single nucleotide polymorphism markers at the 10,633,942-bp and 10,820,033-bp genomic positions in a black-hull-awned (BHA) weed strain using a weed-crop-mapping population under greenhouse conditions. In this study, we found a portion of the known resistance gene Ptr encoding a protein with four armadillo repeats and confers a broad spectrum of blast resistance. We then analyzed the sequences of the Ptr gene from weedy rice, PtrBHA, and identified a unique amino acid glutamine at protein position 874. Minor changes of protein conformation of the PtrBHAgene were predicted through structural analysis of PtrBHA, suggesting that the product of PtrBHAis involved in disease resistance. A gene-specific codominant marker HJ17-13 from PtrBHAwas then developed to distinguish alleles in weeds and crops. The PtrBHAgene existed in 207 individuals of the same mapping population, where qBR12.3b was mapped using this gene-specific marker. Disease reactions of 207 individuals and their parents to IB-33 were evaluated. The resistant individuals had PtrBHAwhereas the susceptible individuals did not, suggesting that HJ17-13 is reliable to predict qBR12.3b. Taken together, this newly developed marker, and weedy rice genotypes carrying qBR12.3b, are useful for blast improvement using marker assisted selection. 
    more » « less